

Titration von Säure in Saucen

Beschreibung

Diese Methode dient der quantitativen Bestimmung des Gesamtsäuregehalts in Ketchup, Mayonnaise, Senf und Saucen. Die Probe wird mit 0,1 mol/L Natriumhydroxidlösung auf einen pH-Wert von 8,2 titriert. Um die gesamte Säure der Probe zu erfassen, muss diese möglichst fein dispergiert werden. Der Gesamtsäuregehalt wird in % Essigsäure in berechnet.

Geräte

Titrator	TL 5000, TL 7000, TL 7750 oder TL 7800	
Elektrode	N 62, A 162 2M DIN ID or A 7780 1M-DIN-ID oder ähnliche	
Kabel	L1A (nur für Elektroden mit Steckkopf)	
Stirrer	Magnetrührer TM 235 oder ähnliche	
Homogenisator	Polytron Pt 1200 oder ähnliche	
Laborgeräte	Becherglas 150 mL	
	Magnetrührstab 30 mm	

Reagenzien

1	Natriumhydroxid Lösung 0.1 mol/L			
2	Puffer pH 4.00			
3	Puffer pH 7.00			
4	KCI Lösung 3 mol/l			
5	Natronkalk			
	Alle Reagenzien sollten mindestens analysenrein sein			

Durchführung der Titration

Reagenzien

NaOH 0.1 mol/L

NaOH ist als gebrauchsfertige Lösung erhältlich.

Natronlauge nimmt schnell CO₂ aus der Luft auf und wird dadurch unbrauchbar. Die Lösung muss daher mit einem CO₂-Absorptionsmittel wie Natronkalk vor CO₂ geschützt werden. Dazu wird ein trockenes, mit Natronkalk gefülltes Rohr auf die Vorratsflasche gestellt.

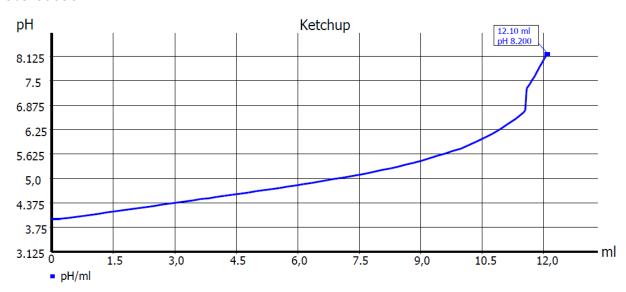
Die Titerbestimmung der NaOH 0.1 mol/L wird wie in der Applikationsschrift "Titerbestimmung von NaOH" beschrieben bestimmt.

Reinigung und Aufbewahrung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Zur Aufbewahrung der Elektrode eignet sich KCl-Lösung 3 mol/L oder Elektrolytlösung L911.

Da es sich um eine Endpunkt-Titration handelt, müssen die Elektroden regelmäßig (wöchentlich) kalibriert werden. Empfohlen wird eine Zweipunktkalibrierung mit Puffern pH 4,00 und pH 7,00. Die Elektrode muss ersetzt werden, wenn die Steilheit <95% ist.

Probenvorbereitung


2-10 g der Probe werden in ein 150-mL-Becherglas eingewogen und mit destilliertem Wasser auf ca. 60 - 80 mL aufgefüllt. Die Probe wird gerührt, bis sie fein verteilt vorliegt. Je nach Probe kann es nötig sein, sie zu homogenisieren (z.B. mit Polytron Pt 1200) homogenisiert. Die Probe wird mit Natriumhydroxid 0,1 mol/L bis zum Endpunkt pH 8,2 titriert.

Der Verbrauch NaOH 0,1 mol/L sollte etwa 5 - 15 mL betragen, ggf muss die Probenmenge angepasst werden.

xylem | Titration 103 AN 2

Titrationsparameter

Probentitration

Standardmethode	Total Acidity		
Methodentyp	Automatische Titration		
Titrationsmodus	Endpunkt		
Messwert	рН		
Messgeschwindigkeit/Drift	normal	Min. Wartezeit	2 s
		Max. Wartezeit	15 s
		Messzeit	2 s
		Drift	20 mV/min
Startwartezeit	0 s		
Schrittweite	0.05 mL		
Dämpfung	Keine	Titrationsrichtung	steigend
Vortitration	Off	Wartezeit	0 s
Endpunkt 1	pH 8.2	Delta Endpunkt	pH 1.2
		Endpunktverzögerung	5 s
Endpunkt 2	Aus		
Max. Titrationsvolumen	20 mL		
Dosiergeschwindigkeit	20%	Füllgeschwindigkeit	30 s

xylem | Titration 103 AN 3

Berechnung:

Das Ergebnis wird als Säuregehalt in % Essigsäure (HAc) berechnet:

$$S\"{a}uregehalt \% \ HAc = \frac{(EP1-B)*T*M*F1}{W*F2}$$

EP1		Verbrauch des Titrationsmittel am Endpunkt
В	0	Blindwert
Т	WA	Exakte Konzentration des Titrationsmittels
М	60.052	Molekulargewicht
W	m	Einwaage [g]
F1	0.1	Umrechnungsfaktor 1
F2	1.0	Umrechnungsfaktor 2

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

